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A number operator has been introduced based upon the binary (p-nary) 
presentation of numbers. This operator acts upon a numerical state vector. 
Generally the numerical state vector describes numbers that are not precise 
but smeared in a quantum sense. These states are interpreted in wave logic 
terms, according to which concepts may exist within the inner language of 
a phenomenon that in principle cannot be translated into the language of 
the investigator. In particular, states may exist where mean values of a 
quantity, continuous in classical limits, take only discrete values. Operators 
for differentiation and integration of operator functions are defined, which 
take the usual form in the classical limit. 

1. WAVE LOGIC AND ITS APPLICABILITY 

Suppose that a quantity X '  is measured with a precision of  only 
AX'  /> A, independent of  the experimental procedure. Let A be called the 
minimal length, and then let us measure X '  in units of A by introducing 

X = X ' / A  (1.1) 

Obviously, only numbers X >> 1 have sufficiently clear meaning. This 
cannot be said for numbers X < 1. In defining such numbers we are compelled 
to employ as a base not the real experiment for measuring X '  but only 
analogies and images. It is important, however, that there always exist 
external objects (independent of  the quantity X')  which permit the observer 
to construct the classical scale of numbers ordinarily employed, to be denoted 
as Xo. The observer is also compelled to employ classical logic to describe 
phenomena, and in a certain sense which will become clear below it may be 
said that the use of the classical scale of  numbers is related to the use of  
classical logic. 
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However, there is no guarantee that the inner logic of the phenomenon 
connected with X' coincides with the classical logic of the investigator. 
Concepts and symbols that have a definite meaning within this inner logic 
may not have a unique interpretation within the logic of the investigator and 
vice versa. In such cases the corresponding quantities cannot be measured by 
the investigator with sufficient precision. 

When such a situation arises it may be said with equal fairness that X' 
cannot be precisely measured because it is impossible to give it an adequate 
definition, and thus the numbers X (and propositions based upon them) have 
no unique meaning; or that it is impossible to give X' an adequate definition 
because X' in principle cannot be precisely measured. 

Wave logic as described in Orlov (1975) x is a convenient tool for describ- 
ing such situations (of course, from the point of view of one side, in this case 
from the point of view of the observer). To be more exact, in terms of this 
tool, it is not a matter of different logics but of different languages within the 
framework of one and the same wave logic, or of different points of view. In 
such a case the language of the observer and the inner language of the 
phenomenon have no exact mutual translation "because" the points of view 
are incompatible. 

Some real situations may be even more complicated. That is, certain 
conceptions can have no exact definitions from any point of view. The 
apparatus of wave logic also permits a description of such a case, by going 
from state vectors to density matrices (see below). We continually encounter 
such complicated situations in the humanities and when communicating with 
one another. 

Wave logic is a natural generalization of the classical two-valued logics. 
In so far as within any nonequivalent proposition no information exists 
concerning its validity or falsity, the idea suggests itself of representing the 
proposition as an operator acting on some function in which such information 
is included. A simple generalization of such functions leads to the SU2 
rotation group in the "truth space." From the hypothesis of the existence of 
the SUz group follows the existence of multiple-valued wave logic. Below we 
relate the p-nary presentation of a number and the application ofp-nary wave 
logic. But the main results appear to be independent of the dimension p of the 
logic. 

The tool for analyzing nonprecise numbers developed in this paper could 
be considered independently, without wave-logical interpretation. The wave- 
logical interpretation may reflect the train of thought of the author that led 
to these results with independent meaning. 

Only Part I of this paper has been published. 
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2. THE N U M B E R  OPERATOR 

The binary presentation of  any number X is 

X = s  ~ a~/2 e (2.1) 

where s = + 1 designates the sign of the number, and a k = 0, 1. 
Let us relate this presentation to an infinite row of  cells numbered k with 

all integer values from - o o  to m. We shall say that cell k is filled if h~ = 1 
and void ifAk = 0. A special sign cell is filled i f s  = + 1 and void i f s  = - 1. 

We now introduce an enumerable infinite set of  atomic propositions 
denoted as 

�89 --- cell number k is filled (2.2) 

In accordance with (1.1) Oak is the 2 x 2 operator affecting the kth cell: 

(1 ~ 0) (2,) 
O ' 3 k  ~ - -  1 k 

Information about  the validity or falsity of  proposition (2.2) is contained 
in the kth wave funct ion-- the spinor ~0k. In the two limiting cases correspond- 
ing to classical logic, namely, when proposition (2.2) is precisely true or 
precisely false (Ak = 1 or 0) we have 

o ~  = ( 2 a ~  - 1 ) ~  

 oO__ 

(2.5) 

Let us now redefine (2. I) by introducing the number operator x:  

x = - s  ~ (�89189 ~ (2.6) 
k =  - - r  

This operator must act on the numerical  s tate  vector written as the tensor 
product  of  all the kth wave functions. In the classical case (i.e., when A k = 0 
or 1) the state vector equals 

ro(Xo , = s ~ ~o~, s s  = • s, ~ 3 J o  ̀x~ = ~3k '~> ' l~  ~> (2.7) 
k ,= - ~  k e k "  

Here S is a sign function containing information about the sign of the number 
xo which is completely determined by the sequences of  numbers Ak by using 
formula (2.1). Thus the information on the number is not contained in 
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presentation (2.6), but it is transferred to the state vector. The number x0 
itself results from the action of the operator x upon the state vector: 

xF~o xo) = xoF (x~ Xo = s ~ 2t~/2 ~ (2.8) 
k =  --cO 

There is a certain ambiguity in the presentation of  binary-rational 
numbers by formula (2.1). Let us agree upon the presentation of  binary- 
rational numbers by a finite amount of  quantities A k = 0, 1. Thus a mutually 
unique correspondence between numbers Xo and sequences he is established. 
Thereafter we may define the scalar product of  state vectors by 

lT(x~')'~ ]W(Xo) (F(o %'', F(o %') -- ~ o v -o  = 3ak'a~ 3s,~ (2.9) 
k =  --0o 

where 3ab is the Kronecker symbol and * is the Hermitian conjugate. 
Any arbitrary state vector may be represented by a (nondenumerable) 

set of orthonormal vectors (2.7). 
The average value of  an arbitrary operator in some state is defined in 

the usual manner. In particular 

(x)  = (F(o %), xF(o %)) = s ~ 9~)~' 2 
k =  - 0 o  

= s ~ a~/2 ~ = x0  ( 2 . 1 0 )  

In the vector representation of  Fo %) all the operators aa~ and together 
with them the operator x are diagonal. 

A similar tool may be developed for any p-nary representation of  a 
number x, 

x = s ~=~-o~ ( ~ - ~  + f~3k) /pk (2.11) 

where f~3~ is the operator of proposition (2.2) in thep-nary logic. Its (diagonal) 
elements are 

f~s~ p - 1 p -  3 p - 1 
= 2 ' 2 . . . .  ' 2 

f~3k acts upon the p-dimensional wave function (column). 

3. REAL SYSTEM STATE VECTOR 

In general the numerical state vector F may not coincide with (2.7); 
moreover, by our initial assumptions on the properties of measurements of 



Wave Calculus Based Upon Wave Logic 589 

the quantity X', the numerical state vector of this quantity is sure to differ 
from any of the Fo(~0 ). We assume that in such a case the independence of 
propositions (2.2) referring to different cells is valid, so that 

F = S  

where spinors 9~k are of the form 

~% ---- 

k 

I-~ ~k (3.1) 

r~l ~- + I~l  ~. = 1 (3.2) 

and  [ak[ 2 is the probability of proposition (2.2) being true, while [fl~[2 is the 
probability of it being false. 

Expanding F in the orthonormalized basis 

F = ~ a(xo)F(o %) (3.3) 
Xo 

we may assert that la(x0)] 2 is the probability that a single measurement of the 
quantity x will give Xo. As Xo runs over a continuum of values it is better to 
speak about the density of the probability and to compare probabilities 
relative to one another. 

Let us consider physical (or other) situations where 

lakl 2 = {~ or 0 fork>_-f~ k ~< 01 (3.4) 

for instance, ak = 2-1/2, flk = + 2-1/2. The set of state vectors of this type has 
the same cardinality as the set of vectors Fo %). We shall write the numerical 
state vector of this type in the form 

0 oo 

FI~ = S 1--I ~o ~ 1- ]  (~k~0~ + ~k~%) (3.5) 
~= --o0 /r 

The first factors in this product describe the integer part of the number 
N = s Z ~k/2~, which is given precisely. The second factors describe the 
fractional part of the number and it is easy to see that all the points between 
I N I  and IN + 1 1 are equivalent. Thus it should be expected that the average 
value of the quantity x in any of these states should be <x)~/2 = s(N + �89 

This result is independent of the dimension p of the logic applied. I f  the 
square of the modulus of all the coefficients of the p-dimensional wave" 
function are equal, I~1 ~ = I/p, then (f23~) = 0 and 

(x>1/2 = S(N + �89 (x'>~/2 = ~(N + �89 (3.6) 
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Let us consider one more possible situation. Let the inner language of 
phenomena related to the quantity x' be " ro ta ted"  relative to the classical 
language of the observer in such a manner that for the real state 

~o~a~ ) = O~00~ = cos/3k~Oo~ + (2~ - 1)sin/3~o~0ffak (3.7) 

where the rotation operator in the kth cell is 

= /cosfik - s inf ik~ 
Oh \sin/3k cos flk] (3.8) 

In this case, as can easily be checked, 

(x)(a~)=x{ak ) - s  ~ ( 2 a ~ -  1) sin=ilk 
2e (3.9) 

/ r  --o0 

where {hk} is that sequence that corresponded to the "nonrotated" state 

F(a~:} = ~-I OkF(~176 
1r ~ - -  o o  

Xo = X~o ~ = } ~ ak/2 k (3.10) 

If  sin 2 fl~ = 0 for k ~< 0 and sin 2/3 k = �89 for k >/ 1, (3.9) will again give the 
result of (3.6). The situation may be such that sin 2/3 k gradually increases from 
zero to �89 at k > 1. This corresponds to a gradual transition from complete 
clearness to complete unclearness about the truth of the proposition (2.2). It 
may be said that each division by 2, beginning with the division of unity, 
gives its specific contribution to the spread (smearing) of the resulting numbers. 
Let us for instance assume that 

tO, k~<O sin 2ilk = �89 - e - ~ ) ,  k > l  
(3.11) 

In this case the measurement results for the averages (x)  are not located only 
at points of the discrete grid (3.6); also permissible are (x)  lying within 
certain segments of the intervals between integer numbers. Although single 
measurements may produce any values for the quantity x, for average values 
the regions in the vicinity of integers N + a are prohibited, where 1/a is (in 
order of magnitude) that cell number beginning with which a strong uncer- 
tainty exists in the truth of (2.2). This result including the limiting case (3.6) 
gives hope that the tool for "wave calculus" proposed here may become useful 
in describing nonlocality in the theory of elementary particles, if such 
nonlocality exists. 

It should be emphasized that the location of prohibited points is 
independent of the choice of the origin and of the direction of the coordinate 
axis in space if the space is not unidimensional. It is essential however that 
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the coordinate system is chosen before verification of predictions concerning 
the mathematical expectation of quantities, i.e., before making measurements. 
This situation is analogous to that which exists when measuring the spin of 
a particle when the effect of the measuring device determining "the z axis" 
leads to the appearance of the discrete spectrum of spin projections upon this 
axis. Quantum mechanics does not describe the "objective world" but what 
we can observe with the assistance of measuring devices when their influence 
upon the object is the minimum possible in principle. As for the situation 
being described in this paper, it should be especially emphasized at this point 
that not only the act of making the measurement but the choice of the 
language itself with which the investigator intends to describe the results of 
measurements is a violation of the object, which perhaps has its own language, 
in principle noninterpretable into the language of the investigator, no matter 
what language is chosen by the investigator. In particular, the conception 
"the coordinate origin" cannot be exactly translated into "the language of the 
object" if situations of types (3.4) or (3.11) exist. 

The following elucidates the meaning of these statements. The vectors 

F{a~ ~ = S ~ [cos/3k~ooa~ + (2A k - 1 ) s in  ]3~cpo~-2ak] (3.12) 

comprise a complete orthonormal set. Propositions represented by this set 

cr-ae = Oea~O~ -1 (3.13) 

have a unique meaning and the number operator 

2= (I-~k O,)x(~Ik 0~1)=} ~ �89 +~a,)/2 e (3.14) 
k:= - - c o  

is diagonal in this representation: 

2F~a~ ~ = s hk 
k r 

F ~Ak~ ~ F (~> (3. t 5) 

The formal expression of the impossibility in principle of a unique correspond- 
ence between the language of the investigator and the inner language of the 
phenomenon is the noncommutativity of the operators ask and g3~ and 
consequently of the operators x and 2: 

2 ~ , ~2k = (3.16) 
k =  - ~ ,  0 h; 
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The mean (oze)~ in state (3.12) equals zero, and as o]k = 1 then 

(x2 - 2x)ta~ ~ = - ~ sin 2 2fl~/4 zk + 1 (3.17) 

In the case of (3.4) when sin 2 fl~ = cos 2 fl~ = �89 k/> 1, we obtain 

1 
I(x2 - 2x){ak}ll/= = (3.18) 

2X/7 

Such is the order of magnitude of uncertainty of the concept of a number 
resulting from the inherent inadequacy of the language of the observer 
(Orlov, 1974). 2 

The language interpretation of this effect, however, cannot be considered 
strictly substantiated, insofar as the investigator deals with instrument 
readings and does not seem able to distinguish "language" effects from 
instrument effects upon the object's state. One general argument in favor of 
the language interpretation is that the effect of the act of measuring on the 
state of a system "object + instrument" is described by quantum mechanics, 
which is an extremely restricted theory. To explain effects beyond the limits 
of this theory (if they really exist) one should draw on new principles. The 
possible influence of the language on the state of the system "object + 
instrument + description system" is a new principle (at the same time lying 
in the channel of quantum mechanical philosophy). 

The situation may be such that no unique interpretation exists within the 
inner language of the phenomenon of the proposition ffak. In such a case the 
state vectors (3.13) should be substituted by some density matrices. 

4. F U N C T I O N  O P E R A T O R S  

In the representation where operator x is diagonal the operator function 
r is determined by the following relation: 

r ) = r (4.1") 

So, if F is determined by (3.3), then 

r  = ~ a(xo)r162 %, (4.2) 
XO 

The Taylor series expansion of r may be convenient in practice: 

r = r + 4,'(<x>)Ax + �89162 + . . . ,  

2 In Orlov (1974) expressions of type (3.16) were postulated. 

A x  __ x - -  < x )  

( 4 . 3 )  
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where ~((x)) is the usual (numerical) function of (x). The mathematical 
expectations and matrix elements for some of the first few moments in 
situations described by (3.7) are 

(Ax=) = ~ sin 2/3~ cos =/3~ (4.4) 
k 4k 

_- 112 for sin =/3k = cos =/3~ = �89 k />  1 (4.5) 

(Ax a) = s ~ (21~ - 1) sin = fl~ cos 2/3k cos 2flk/8 ~ (4.6) 
k 

-- 0 for the case (4.5) (4.7) 

1 /3k) (AXe) = ~ 1 (sin2/3~ cos=/3~ cos 2/3~ + ~ sin4/3~ cos 4 

' l �9 9. + 5 ~ 4k+'---q sin flk cos =/3~ sin =/3, cos =/3, (4.8) 

In the particular case when x is an operator and p a common number, then 

( p2 13p 4 ) (4.9) 
(e ~px) = e ~<*> 1 - ~-4 + 16.24.4-------3 . . . .  

= f ( p )  exp [ ips(N + �89 

wheref(p)  is the usual numerical function ofp.  
Note that dispersion (4.5)is independent of the dimension p of the logic 

applied just as is true of (x).  Indeed, in the case of equal probability for any 
answer to the question whether or not proposition f2ak is true we have 

and 

Thus 

l p -  l p  + 1 p = -  1 
(f2~k) = ( f2~)  = 3 2 2 = 12 

P=-1 ~1p1_ ~ 
(x=) = (x)2 + 1 ~  = (N + �89 + (4.10) 
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Let us further write a few matrix elements [for case (2.7)]. Since 

sin ft. ~1-~  
xFU'O = xoF{~O - s ~ ,eo~ 

x I-~ (cos fl.~ooa. " + (2)% - 1) sin/3.~oo~g a.) (4.11) 

operator x in addition to diagonal elements contains only matrix elements for 
transitions ~. -+ 1 - A., ~, -+ A,, i ~ k, where k is one (and only one) of the 
cell numbers: 

sin ft. cos fl~ 
(1 - a.]xlA.) - (F(X,a-~ ~, xF{a,:a* ~) = - s  2" (4.12) 

(in the braces{ ;  }the varying ~k are written separately ffomnonvarying a~). 
Hence 

sin flk cos/3. [ - 2~)  cos 2ft.] 
<1 - a . l x 2 1 a . >  = - s  2 .  + s (1  2 k (4.13) 

<1 - ak; 1 -- a.[x2lh.; a.)  sin 2ft. sin 2ft. 
= 2.+n+1 (4.14) 

where 

5. D I F F E R E N T I A T I O N  A N D  I N T E G R A T I O N  

Let us define an operator of variation of operator x by 

d . x  = [ x % n  - c q . x ]  = i s % ~ / 2  ~ (5 .1 )  

The meaning of definition (5.1) is as follows. The operator a l .  performs the 
substitution ),. ~ 1 - ~. within the nth cell of the state Fo %). Thus if the 
operator x acts after the operator al .  then the result of its action changes by 
+ �89 as compared to the inverse order of action of the operators: 

&xF(o':o ) = lim s(1 - 22~.)FotXo+S(l_=a.)12.1 (5.3) 
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Similarly we shall define an opera to r  o f  var ia t ion o f  a funct ion ~(x) as 

d ,# (x )  = [~(x)a~, - a l ,~(x)]  (5.4) 

N o w  the derivative opera to r  if' = d~/dx  is determined f rom the equat ion 

l im [ d ~  - r  d~x] = 0 (5.5) 

or 

~'  = - l i m  is%~2~[~o1~ - ~1~]  (5.6) 
n - + o o  

Let  us find, for  example,  the opera tor  dx2/dx,  x2%~ - %~x 2 = (x, Ix, 
o1~]}. I t  can be easily seen that  in the limit n ~ m bo th  terms commute :  

[x(xol,~ - ,rl,~x) - (xol,~ - crl,~x)x] = crl,/2 2~ (5.7) 

Thus  dx2/dx  = 2x. In  general 

dx'~/dx = nx  '~-~ (5.8) 

In  part icular ,  for  n = - 1 it follows that  

l im [x-l,rl,~ - %,,x -1 + x-2(xc~l,~ - ol ,x)]  = 0 

f rom the identi ty 

l im {2x~ranx - x2crz, - crlnx 2} = 0 
n...~ co 

(the brackets  have an order  o f  magni tude  equal to �89 
Various possibilities for  integrat ion exist in this theory. 
I f  funct ion ~(x) has an  antiderivative so that  ~(x) = d~b/dx then an 

integral  can be determined by  

s X~(x)  = ~ ( x )  - ~ ( a )  (5.9)  dx  

Let  us consider as an example  the mean  value of  the integral o f  x=: 

( ( X x  2 d x >  = ~ ( ( x a )  - aa) = ~ ( ( x ) a  - aa) + ( x ) ( ( x 2 )  - ( x )~ )  

F o r  the case (3.4) this integral becomes 

�89 + �89 _ a a] + ~-~(N + �89 (5.10) 
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One can also determine an integral of  the following type: 

f; 
2 ('~2 - . ,~) lag 

($(x)) (~ d:~ = lim A.2 (F  (~ +nAx~, q~(x)F(X~ + nA~) 
1 A~ -'J'O r/.=O 

(5.11) 

where ~7 is the number in the representation in which operator (3.14) is 
diagonal, i.e., in the representation of"the inner language of the phenomenon";  
and also an integral of  type (5.9), but depending both on the upper and lower 
limits 

f 
x + D  

J ( x )  = 6(x)  dx  
L, x 

(5.12) 

where D is an ordinary number. Integrals of type (5.11) and (5.12) may be 
represented in the purely operational form if we introduce operators of 
"infinitesimal increase" and "infinitesimal decrease" of the operator. 

For example, let F0 %~ be such that x0 i> 0. 
The operator Pn § for shifting to the right, i.e., an increase by the value 

1/2 n, in this case is of  the form 

pn + = a,~ + + a+_la,~ + a+_2an_la,~ + . . .  

= ~ a,+_zan_~+l �9 �9 �9 an 
I = 0  

(5.13) 

P.+Fo~XO ~ = Fo~Xo +1/2"~, Xo t> 0 (5.14) 

The inverse and at the same time the Hermitian conjugate operator is 

P,~ = ~ an_za+_z+l.., a,, +, Pn+P,, = 1 (5 .15)  
1=0 

Here operators 

a ~ =  (~ ~) =�89 a n + =  (0 0 10) ~ (5.16) 

are operators for voiding and filling the nth cell: 

an~p~,, = ~Oon, a,,+~Ooln = 0 
(5.17) 

an~o~ = O, an+~oo~ = ~o~. 

Operators (5.13) and (5.15) act as follows. If cell n is void then only the first 
term (the operator an +) will act, filling this cell while the other terms give zero. 
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If  the nth cell is filled but the (n - 1)th is void, the second term voids the nth 
cell and fills the (n - 1)th cell, while all the other operators give zero; etc. 
In all cases xo is increased by one and the same value 1/2 ". 

Employing these operators one can write integral (5.12) as 

f 
x + D  

J ( x )  = r dx 
~ X  

1 
= lim ~ [r + P~(x)P~ § + P~2r + . . .  + P~Nr 

(5.18) 

where N = D.2 ". In particular if this operator acts on an eigenstate for 
operator x (i.e., on a "classical" state), then (5.18) transforms into the common 
classical integral. 

I f  operators P ,  and P,  + are replaced in (5.18) by operators P,  + and P,  + 
expressed using ~1, and ~2, in such a manner that Y3, is a diagonal operator 
of type (3.13) 

ff ,~ + F(~) = F(X + 1/2.) (5.19) 

then we get integral (5.11) instead of (5.18). 
In the general case when operator (5.18) acts upon the state 

we have 

F(*, = ~ a(xo)F~o ~~ 
Xo  

(fs ) 1 ~a(Xo) (xo+Dr FCx~ (5.20) r dx F ̀ ~' = lira ~ *o ~o 

where the y integral is the usual classical integral. If  r  possesses an 
antiderivative, r  = dcP/dy, then 

( ; ~  . r dx F (~ = ~o a(Xo)[@(xo + D) - ag(Xo)]F (xo) (5.21) 

which coincides with the integral operator definition previously defined: 

*+~ r  = r  + D) - r  (5.22) 
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6. C O N C L U S I O N  

The " b o n e  yie ld"  o f  this  pape r  seems to be fo rmulas  (2.11), (5.5), and  
the resul t  (3.6). 
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